

1 Impact of HO₂ aerosol uptake on radical levels and O₃

2 production during summertime in Beijing

- 3 Joanna E. Dyson¹, Lisa K. Whalley^{1,2}*, Eloise J. Slater^{1,a}, Robert Woodward-Massey¹,
- 4 Chunxiang Ye³, James D. Lee^{4,5}, Freya Squires^{4,b}, James R. Hopkins^{4,5}, Rachel E. Dunmore⁴,
- 5 Marvin Shaw^{4,5}, Jacqueline F. Hamilton⁴, Alastair C. Lewis^{4,5}, Stephen D. Worrall⁶, Asan
- 6 Bacak⁷, Archit Mehra^{8,c}, Thomas J. Bannan⁸, Hugh Coe^{8,9}, Carl J. Percival¹⁰, Bin Ouyang¹¹, C.
- 7 Nicholas Hewitt¹¹, Roderic L. Jones¹², Leigh R. Crilley¹³, Louisa J. Kramer¹⁴, W. Joe. F.
- 8 Acton¹⁴, William J. Bloss¹⁴, Supattarachai Saksakulkrai¹⁴, Jingsha Xu^{14,d}, Zongbo Shi¹⁴, Roy
- 9 M. Harrison^{14,e}, Simone Kotthaus^{15,16}, Sue Grimmond¹⁵, Yele Sun¹⁷, Weigi Xu¹⁷, Siyao
- 10 Yue^{17,18,19}, Lianfang Wei^{17,19}, Pingqing Fu^{17,18}, Xinming Wang²⁰, Stephen R. Arnold²¹,
- 11 Dwayne E. Heard¹*
- 12 [1] School of Chemistry, University of Leeds, LS2 9JT, UK.
- 13 [2] National Centre of Atmospheric Science, University of Leeds, LS2 9JT, UK.
- 14 [3] College of Environmental Sciences and Engineering, Peking University, Beijing, 100871,
- 15 China.
- 16 [4] Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of
- 17 York, Heslington, York, YO10 5DD, UK.
- 18 [5] National Centre of Atmospheric Science, University of York, Heslington, York, YO19 5DD,
- 19 *UK*.
- 20 [6] Aston Institute of Materials Research, School of Engineering and Applied Science, Aston
- 21 University, Birmingham, B4 7ET, UK.
- 22 [7] Turkish Accelerator and Radiation Laboratory, Ankara University Institute of Accelerator
- 23 Technologies, Atmospheric and Environmental Chemistry Laboratory, Gölbaşi Campus,
- 24 Ankara, Turkey.
- 25 [8] Centre of Atmospheric Sciences, School of Earth and Environmental Sciences, University
- 26 of Manchester, Manchester, M13 9PL, UK.
- 27 [9] National Centre for Atmospheric Sciences, University of Manchester, Manchester, M13
- 28 9PL, UK.

- 29 [10] Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
- 30 [11] Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK.
- 31 [12] Department of Chemistry, University of Cambridge, Cambridge, UK.
- 32 [13] Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
- 33 [14] School of Geography, Earth and Environmental Sciences, University of Birmingham,
- 34 Birmingham, B15 2TT, UK.
- 35 [15] Department of Meteorology, University of Reading, Reading, UK.
- 36 [16] Institut Pierre Simon Laplace, École Polytechnique, Palaiseau, France.
- 37 [17] State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric
- 38 Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
- 39 China.
- 40 [18] Institute of Surface-Earth System Science, School of Earth System Science, Tianjin
- 41 University, Tianjin 300072, China.
- 42 [19] Minerva Research Group, Max Planck Institute for Chemistry, 55128 Mainz, Germany.
- 43 [20] State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry,
- 44 Chinese Academy of Sciences, Guangzhou, 510640, China.
- 45 [21] School of Earth and Environment, University of Leeds, LS2 9JT, UK.
- 46 anow at: The Hut Group, Unit 1 Icon Manchester, Manchester Airport, WA15 0AF, UK.
- 47 bnow at: British Antarctic Survey, Cambridge, CB3 0ET, UK.
- 48 ^cnow at: Chaucer, Part of Bip Group, 10 Lower Thames Street, London, EC3R 6EN^dnow at:
- 49 Beijing Hanzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou
- 50 310023, China.
- 51 ealso at: Department of Environmental Sciences, Faculty of Meteorology, Environment and
- 52 Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
- *Correspondence to: <u>D.E.Heard@leeds.ac.uk</u>, <u>L.K.Whalley@leeds.ac.uk</u>

55

Abstract The impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical 56 57 concentrations and the O₃ production regime in Beijing summertime was investigated. The 58 uptake coefficient of HO₂ onto aerosol surfaces, γ_{HO_2} , was calculated for the AIRPRO 59 campaign in Beijing, Summer 2017, as a function of measured aerosol soluble copper concentration, [Cu2+]eff, aerosol liquid water content, [ALWC], and particulate matter 60 61 concentration, [PM]. An average γ_{HO_2} across the entire campaign of 0.070 \pm 0.035 was 62 calculated, with values ranging from 0.002 to 0.15, and found to be significantly lower than 63 the value of γ_{HO_2} = 0.2, commonly used in modelling studies. Using the calculated γ_{HO_2} values 64 for the Summer AIRPRO campaign, OH, HO2 and RO2 radical concentrations were modelled 65 using a box-model incorporating the Master Chemical Mechanism (v3.3.1), with and without 66 the addition of γ_{HO_2} , and compared to the measured radical concentrations. Rate of destruction 67 analysis showed the dominant HO₂ loss pathway to be HO₂ + NO for all NO concentrations 68 across the Summer Beijing campaign with HO₂ uptake contributing < 0.3 % to the total loss of 69 HO₂ on average. This result for Beijing summertime would suggest that under most conditions 70 encountered, HO₂ uptake onto aerosol surfaces is not important to consider when investigating 71 increasing O₃ production with decreasing [PM] across the North China Plain. At low [NO], 72 however, i.e. < 0.1 ppb, which was often encountered in the afternoons, up to 29% of modelled 73 HO_2 loss was due to HO_2 uptake on aerosols when calculated γ_{HO_2} was included, even with the 74 much lower γ_{HO_2} values compared to γ_{HO_2} = 0.2, a results which agrees with the aerosol-75 inhibited O₃ regime recently proposed by Ivatt et al., 2022. As such it can be concluded that in 76 cleaner environments, away from polluted urban centres where HO₂ loss chemistry is not 77 dominated by NO but where aerosol surface area is high still, changes in PM concentration and hence aerosol surface area could still have a significant effect on both overall HO2 78 79 concentration and the O₃ production regime. 80 Using modelled radical concentrations, the absolute O₃ sensitivity to NO_x and VOC showed 81 that, on average across the summer AIRPRO campaign, the O₃ production regime remained 82 VOC-limited, with the exception of a few days in the afternoon when the NO mixing ratio 83 dropped low enough for the O₃ regime to shift towards NO_x-limited. The O₃ sensitivity to VOC, 84 the dominant regime during the summer AIRPRO campaign, was observed to decrease and 85 shift towards a NO_x sensitive regime both when NO mixing ratio decreased and with the 86 addition of aerosol uptake. This suggests that if $[NO_x]$ continues to decrease in the future, ozone 87 reduction policies focussing solely on NO_x reductions may not be as efficient as expected if

88 [PM] and, hence, HO₂ uptake to aerosol surfaces, continues to decrease. The addition of aerosol

89 uptake into the model, for both the γ_{HO_2} calculated from measured data and when using a fixed

value of γ_{HO_2} = 0.2, did not have a significant effect on the overall O₃ production regime across

91 the campaign. While not important for this campaign, aerosol uptake could be important for

areas of lower NO concentration that are already in a NO_x -sensitive regime.

1 Introduction

Climate change and air quality are two significant environmental issues faced by society today with the drive to net zero emissions by 2050 becoming increasingly important to remain consistent with the long-term anthropogenic temperature warming outcome of below 1.5 °C as set out by the Paris Agreement in 2016. Increasing anthropogenic emissions have caused not only an increase in atmospheric warming, but also a deterioration in atmospheric air quality: a concern due to both short and long term negative health effects seen as a product of poor air quality such as respiratory and cardiovascular diseases and cancer (Brauer et al., 2016; Gakidou et al., 2017), in addition to a variety of negative effects on the environment such as increased soil acidification and the ensuing damage to vegetation and crop yield as a by-product of increasing acidity of rain (Forster et al., 2007).

Ambient air pollution has become a serious issue globally, specifically in large urban areas effected by anthropogenic emission sources. Due to rapid industrialisation, Chinese megacities in particular face significant environmental and health challenges from the decline in air quality following urbanisation, with areas such as the Beijing-Tianjin-Hebei area in the North China Plain (NCP) suffering from seasonal extreme pollution episodes as a consequence (Wang, 2021; Jin et al., 2016). In terms of human health, the most important pollutants in many regions are ground level O₃, NO_x (NO₂ and NO) and particulate matter. Nitrogen dioxide (NO₂) can be directly emitted into the atmosphere from high temperature combustion sources or can be formed via the reaction of nitrogen monoxide (NO) with an oxidising species in the troposphere, such as HO₂, leading to the formation of hydroxyl radical (OH) (Ye et al., 2017). Ozone, while vital in the stratosphere to protect the earth from harmful UV radiation and excessive planetary heating, is toxic to both plant and human life at ground level and can react with NO to form NO₂. Particulate matter is emitted anthropogenically and biogenically and can play a role in the warming and cooling of the atmosphere due to the ability of aerosols to absorb or scatter IR radiation depending on their composition. High levels of particulate matter, NO_x

119 and tropospheric O₃ in areas of low atmospheric mixing lead to photochemical smog and the 120 reduction of visibility characteristic of extreme pollution episodes. 121 The concentration of pollutants and trace gases in the troposphere is controlled not only by 122 emission levels but also by the oxidation capacity of the atmosphere which is determined 123 largely by the concentration of the hydroxyl radical (OH) and the closely coupled hydroperoxyl 124 (HO₂) radical, referred to collectively as HO_x radicals. Known for their role in chemical 125 oxidation processes in the atmosphere, OH and HO2 are vital species when considering climate 126 change and air pollution. The OH radical is the main daytime tropospheric oxidant, with a 127 major role as a source of ground level ozone (O₃) (Levy, 1971) and as a sink for both 128 atmospheric pollutants, such as methane, and other radical species. The OH radical also has a 129 role in the formation of secondary pollutants including secondary organic aerosols (SOAs) 130 formed via the oxidation of volatile organic compounds (VOCs). OH and HO2 radicals are closely linked, due to the recycling of HO₂ to give OH, either via the reaction with NO or CO, 131 132 with the dominant loss pathway of HO₂ in polluted regions being the reaction with NO to form 133 OH (for example, as shown in Beijing by Slater et al., 2020; Whalley et al., 2021). As such, 134 understanding the sources and sinks of both OH and HO₂ within the troposphere is crucial to 135 fully understand the concentration and distribution of trace atmospheric species associated with 136 climate change and poor air quality. 137 Observed HO₂ concentrations from field measurements frequently can-not be fully explained 138 by atmospheric chemistry models which often have a tendency to over-predict HO₂ in low NO_x 139 conditions (Kanaya et al., 2007; Commane et al., 2010; Whalley et al., 2010; Whalley et al., 140 2021; Slater et al., 2020; Sommariva et al., 2004). Following the ClearfLo campaign in London 141 2012, zero-dimensional modelling showed an over-prediction of HO₂ by up to a factor of 10 at 142 low NO_x which was attributed to uncertainties in the degradation mechanism of complex 143 biogenic and diesel-related VOC species at low NO_x (Whalley et al., 2018). Over-prediction of 144 HO₂ is also commonly thought to be due, in part, to lack of understanding of HO₂ uptake onto 145 aerosol surfaces. A 2014 modelling study by Xue et al., 2014 focussing on the transport, 146 heterogeneous chemistry and precursors of ground level ozone in Beijing, Shanghai, 147 Guangzhou and Lanzhou, identified HO₂ uptake as a source of uncertainty when considering 148 ozone production, with uptake onto aerosols having the largest effect on HO₂ concentration in 149 Beijing where aerosol loadings were the highest.

While the impact of HO₂ uptake on HO_x concentrations has been calculated to vary from ~10-150 151 40 % (Jacob, 2000; Whalley et al., 2010; Whalley et al., 2021; Slater et al., 2020; Mao et al., 152 2010; Li et al., 2019; Li et al., 2018) globally, often a single value of γ_{HO_2} = 0.2 is used within models, as recommended by Jacob, 2000. Previous experimental studies report uptake 153 154 coefficients which span several orders of magnitude, however, and vary largely based on the 155 state of the aerosol and whether transition metal ion catalysis is involved. For dry inorganic salt aerosols values as low as $\gamma_{HO_2} < 0.002$ have been reported (Cooper and Abbatt, 1996; 156 157 Taketani et al., 2008; George et al., 2013) increasing to up to γ_{HO_2} = 0.2 for aqueous aerosols 158 (Thornton and Abbatt, 2005; Taketani et al., 2008; George et al., 2013). Previous experimental 159 studies report much higher γ_{HO_2} > 0.4 for Cu-dopped aqueous aerosols (Thornton and Abbatt, 160 2005; Mozurkewich et al., 1987; Taketani et al., 2008; George et al., 2013; Lakey et al., 2016). 161 Recently, larger values of γ_{HO_2} have been measured experimentally from samples taken offline at Mt. Tai (0.13-0.34) and Mt. Mang (0.09-0.40) in China by Taketani et al., 2012, while 162 163 another study in Kyoto, Japan, directly measured γ_{HO_2} values under ambient conditions from 164 0.08 to 0.36 (Zhou et al., 2020). With $\gamma_{HO_2} > 0.1$, HO₂ concentrations can be significantly 165 influenced particularly in areas of low [NO] and/or high aerosol loadings (Lakey et al., 2015; 166 Matthews et al., 2014; Mao et al., 2013; Zhou et al., 2021; Martinez et al., 2003). 167 Following multiple policies implemented across China in response to the poor air quality 168 "crisis", a number of studies have reported a decrease in NOx and PM2.5 emissions in China (Jin et al., 2016). Liu et al., 2017 reported NO_x (NO₂ + NO) emissions over 48 Chinese cities 169 170 to have decreased by 21 % in the period of 2011-2015, supported by observed declines in NO_x 171 emissions reported by other studies (Krotkov et al., 2016; Liu et al., 2016; Miyazaki et al., 172 2017; Van Der A et al., 2017). Ma et al., 2016b reported a mean annual decrease in PM_{2.5} of 0.46 µg m⁻³ between 2008-2013, while Lin et al., 2018 reported an average decrease of 0.65 173 μg m⁻³ yr⁻¹ between 2006-2010 increasing to a decline of 2.33 μg m⁻³ yr⁻¹ for the period of 174 175 2011-2015. In contrast to the observed decrease in NO_x and $PM_{2.5}$ emissions, several studies 176 have reported increasing O₃ levels. Ma et al., 2016a reported a maximum daily average 8h mean (MDA8) increase in O₃ concentrations of 1.13 ppb yr⁻¹ for the period between 2003-2015 177 178 at a rural site north of Beijing while satellite observations suggested ground level ozone had 179 increased ~7% for the period between 2005-2010 (Verstraeten et al., 2015). A recent study by 180 Silver et al., 2018 also observed a significant increase in O₃ concentrations with median MDA8 181 increasing at a rate of 4.6 µg m⁻³ yr⁻¹ across China.

182 A 2018 modelling study using the regional model GEOS-Chem by Li et al., 2018 suggested the increase in O_3 across China between 2013-2017 could be attributed to the decrease in $PM_{2.5}$, 183 184 with changes in PM_{2.5} being a more important driver of increasing O₃ trends than NO_x and 185 VOC emissions for the period studied. It was proposed that a decrease in PM_{2.5} emissions had 186 led to a decrease in loss of HO₂ via aerosol uptake resulting in an increase in HO₂ concentration, 187 and a proportional increase in the loss of HO₂ via NO leading to NO₂ which, when photolyzed, 188 forms O₃ leading to an increase in O₃ (Li et al., 2018). However, analysis of measured radical 189 budget from a field campaign in the North China Plain in Summer 2014 with a calculated γ_{HO_2} of 0.08 ± 0.13 , showed no evidence for a significant impact of HO₂ heterogeneous chemistry 190 191 on radical concentrations in North China Plain, concluding that reduced HO2 uptake was 192 unlikely to therefore be the cause of increasing O₃ levels in the North China Plain (Tan et al., 193 2020). Using a novel parameterisation developed by Song et al., 2020 in the framework of the 194 resistor model to take into account the influence of aerosol soluble copper, aerosol liquid water 195 content and particulate matter concentration on HO₂ uptake, and the Multiphase Chemical 196 Kinetic box model (PKU-MARK) to assess the impact of HO2 uptake on the O3 budget for 197 Wangdu Campaign in 2014, Song et al., 2022 concluded that HO₂ heterogeneous processes 198 could decrease the O₃ production rates by up to 6 ppbv hr⁻¹, particularly in the morning VOC-199 limited regime. 200 In this study, the new parameterisation introduced by Song et al., 2021, hereafter referred to 201 solely as the Song parameterisation, coupled with measured data from the Summer AIRPRO 202 campaign in Beijing 2017 was used to calculate a time series of the HO₂ uptake coefficient, 203 which was then used to investigate the impact of heterogeneous uptake of HO2 onto aerosol surfaces on the HO₂ radical budget in Summertime Beijing using the Master Chemical 204 205 Mechanism and the impact on the O₃ regime. We will test the hypothesis that reduced HO₂ 206 uptake due to a reduction in PM_{2.5} concentration is a significant driver of the recent increase in 207 ozone concentrations in China.

2 Experimental

208

209

2.1 Campaign overview and site description

- 210 As part of the Atmospheric Pollution and Human Health (APHH) in a Chinese Megacity
- 211 programme, the University of Leeds took simultaneous measurements of OH, HO₂, RO₂ and
- 212 OH reactivity (k_{OH}) , in addition to measurements of HCHO and photolysis rates, during two

- field campaigns at an urban site in Winter 2016 and Summer 2017 in Beijing, with the aim to
- 214 study the chemical and physical processes governing gas and particle pollution and
- 215 meteorological dynamics in the Beijing region and the links between the two (Shi et al., 2019;
- 216 Slater et al., 2020; Whalley et al., 2021). The two field campaigns in Beijing were part of the
- 217 AIRPRO (The integrated study of AIR pollution PROcesses in Beijing) project within the
- 218 APHH programme, described fully by Shi et al., 2019.
- 219 For the summer AIRPRO campaign, the official science period was from 23rd May 2017 to the
- 220 22nd June 2017, with observations taking place at the Institute of Atmospheric Physics (IAP)
- 221 within the Chinese Academy of Sciences, located between the third and fourth ring roads in
- 222 central Beijing within 100 m of a major road, making local traffic emission sources an
- 223 important source of pollution during measurement period. All instrumentation for the campaign
- 224 was located at this site, housed within nine shipping containers surrounding a meteorological
- tower. Further details of the instrumentation and measurement site can be found in Shi et al.,
- 226 2019.

227 **2.2 FAGE instrumentation description**

- 228 The University of Leeds Fluorescence Assay by Gas Expansion (FAGE) instrument made
- measurements of OH, HO₂ and RO₂ radicals and OH reactivity (k_{OH}). The FAGE instrument
- 230 set up is described fully in Whalley et al., 2018 while the OH reactivity instrument set up is
- 231 described fully in Whalley et al., 2016. Both instruments are also described fully in Slater et
- al., 2020 and so only a brief description is given here.
- 233 Two cells, a HO_x cell and a RO_x cell connected together with a side arm, were used to take
- 234 radical measurements from the roof of the Leeds FAGE lab container. A RO_xLIF flow reactor
- was also coupled to the RO_x cell to allow for detection of RO_2 (total, complex and simple) as
- described by Fuchs et al., 2008. The HO_x cell took sequential measurements of OH and the
- 237 sum of OH and HO₂, by the addition of NO (Messer, 99.5 %), which titrated HO₂ to OH for
- 238 detection by Laser Induced Fluorescence (LIF) at 308 nm.
- 239 The RO_xLIF reactor operated in 2 modes: a 'HO_x mode' where a flow of CO (10 % in N₂) was
- added to ambient sampled air close to the pin hole to convert all ambient OH to HO2; and a
- 241 'RO_x mode' where NO (500 ppmv in N₂) was added in addition to the CO flow to convert all
- 242 RO₂ into OH before all OH was then rapidly converted by CO into HO₂. The air from the
- 243 RO_xLIF reactor was then drawn into the FAGE low pressure fluorescence cell, whereupon pure

NO (Messer, 99.5 %) was injected to convert HO₂ to OH. In HO_x mode, the sum of OH, HO₂ 244 and complex RO₂ was measured, while in RO₂ mode, the sum of OH, HO₂ and total RO₂ was 245 246 measured. From this the concentration of complex RO_2 and HO_2/OH from RO_x can be 247 determined. An Inlet Pre-Injector was used attached to the HO_x cell to remove ambient OH by injecting 248 249 propane directly above the inlet of the cell. This leads to a background measurement while the 250 laser is still online to the OH transition; this background is known as OHCHEM. OHCHEM includes 251 signal from laser scatter and scattered solar radiation and any fluorescence signal from any OH 252 generated inside the cell from an interference precursor. By comparing OHCHEM to the signal 253 generated when the 308 nm laser tuned off the OH transition, OH_{WAVE}, the contribution of any 254 interference can be identified. While the laser is offline, OHWAVE, any signal seen is from laser 255 scattered light and scattered solar radiation. Agreement between OHWAVE and OHCHEM was generally very good during the Summer AIRPRO campaign with an overall orthogonal 256 257 distance regression slope of 1.103 ± 0.017 , with the exception of an interference seen when O₃

2.3 Determination of aerosol soluble copper concentration through ICP-

levels were elevated (see Woodward-Massey et al., 2020 for details).

MS Analysis

258

259260

270

261 The soluble copper ion concentration was determined by analysing the effluent extracted from quartz filter samples taken daily for the entire campaign using Inductively Coupled Plasma 262 263 Mass Spectrometry (ICP-MS). A 6 cm² punch from each large quartz filter PM_{2.5} sample was 264 cut and put in a 15 mL extraction tube and extracted with 10 mL ultrapure water (18.2 MΩ 265 cm) under ultrasonication for 60 minutes at below 35 °C. The sample was then shaken by a 266 temperature-controlled shaker at 4 °C for 3 hours at approximately 60 cycles min⁻¹. After 267 filtering through a filter syringe, 8 mL of effluent was transferred to a new 15 mL metal free tube, and 2 mL of 10% HNO3 was added to make a 10 mL 2% HNO3 extract solution which 268 269 was then analysed to determine the soluble copper ion concentration using ICP-MS.

2.4 MCM v3.3.1 box model description

- The Master Chemical Mechanism (MCMv3.3.1) is a near-explicit mechanism which describes the gas-phase degradation of a series of primary emitted VOC's in the troposphere. The mechanism considers the degradation of 143 VOC's and contains ~17000 elementary reactions
- 274 of 6700 species (Whalley et al., 2013).

The model was constrained to measurements of NO, NO₂, O₃, CO, HCHO, HNO₃, HONO, PAN, H₂O vapour, temperature, pressure, $j(O^1D)$, j(HONO), $j(NO_2)$, $j(CINO_2)$, j(HOCI), $j(CIONO_2)$ and specific VOC species measured using GC-FID (gas chromatography with flame ionisation) and PTR-ToF-MS (proton-transfer reaction time of flight mass spectrometry). The measured species were input into the model at a time resolution of 15 minutes, with species measured at a higher time resolution averaged up to 15 minutes and those measured at a lower time resolution interpolated to give a value every 15 minutes. The full list of all species constrained in the model is shown in Table 1.

Type	Species					
Gas-phase	NO, NO ₂ , O ₃ , CO, HNO ₃ , HONO, H ₂ O, SO ₂ , ClNO ₂ , HOCl					
inorganic species						
Gas-phase	HCHO, PAN, CH ₄ , C ₂ H ₆ , C ₂ H ₄ , C ₃ H ₈ , C ₃ H ₆ , isobutane, butane, C ₂ H ₂ ,					
organic species	trans-but-2-ene, but-1ene, Isobutene, cis-but-2-ene, 2-Methylbutane,					
	pentane, acetone, 1,3-butadiene, trans-2-pentene, cis-2- pentene, 2-					
	methylpetane, 3-methypetane, hexane, isoprene, heptane, benzene,					
	toluene, nonane, decane, undecane, dodecane, o-xylene, CH ₃ OH,					
	CH ₃ OCH ₃ , 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene,					
	ethylbenzene, CH ₃ CHO, C ₂ H ₅ OH, α-pinene, limonene,					
	isopropylbenzene, propylbenzene, m-xylene, p-xylene, 1,2,3-					
	trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene.					
Photolysis rates	$j(O^1D), j(HONO), j(NO_2), j(ClNO_2), j(HOCl), j(ClONO_2)$					
Other	Mixing height, aerosol surface area					

Table 1. Full description of measured species during Summer AIRPRO campaign constrained within the model

284 The different model scenarios referred to in this study are described in full below:

- 1. **MCM** base: The base model run constrained to species described in Table 1.
- 2. **MCM_gamma:** The base model including heterogeneous HO_2 uptake onto aerosols with γ_{HO_2} calculated from parameterisation developed by Song et al., 2020.
- 3. MCM_SA: The base model including heterogeneous HO₂ uptake, this time with γ_{HO_2} fixed at 0.2, as commonly used within models and recommended by Jacob, 2000.

315

316

317318

2.5 Description of the "Song parameterisation"

292 A large uncertainty in determining the effect of HO₂ uptake onto the surface of aerosol particles 293 is the lack of understanding of the dependence of γ_{HO_2} on Cu (II)/transition metal ion concentration within aerosols. Experimentally this dependence is quite well known from 294 295 laboratory studies (Mozurkewich et al., 1987; Thornton and Abbatt, 2005; George et al., 2013; 296 Mao et al., 2013), however the effective concentrations in ambient aerosols and the impact on 297 γ_{HO_2} of aerosol liquid water concentration, [ALWC], has not been incorporated into models 298 before. A novel parameterisation was developed by Song et al., 2020 in the framework of the 299 resistor model to include the influence of aerosol soluble copper on the uptake of HO₂. The 300 new parameterisation for the uptake coefficient of HO₂ onto aerosols, as given in Song et al., 301 2020, is as follows:

$$\frac{1}{\gamma_{HO_2}} = \frac{1}{\alpha_{HO_2}} + \frac{3 \times \nu_{HO_2}}{(4 \times 10^6) \times R_d H_{eff} RT \times \left(5.87 + 3.2 ln \left(\frac{ALWC}{[PM] + 0.067}\right)\right) \times [PM]^{-0.2} \times [Cu^{2+}]_{eff}^{0.65}}$$
(1)

302 where γ_{HO_2} is the uptake coefficient of HO₂ onto aerosols, α_{HO_2} is the mass accommodation coefficient of HO₂, v_{HO_2} is the mean molecular speed in cm s⁻¹, R_d is the count median radius 303 of the aerosol in cm, H_{eff} is the effective Henry's Law constant calculated from H_{eff} = 304 $H_{HO_2}\left(1+\frac{K_{eq}}{|H+1|}\right)$ where H_{HO_2} is the physical Henry's Law constant for HO₂ (i.e. 3900) 305 (Thornton et al., 2008)) in M atm⁻¹, K_{eq} is the equilibrium constant for HO₂ dissociation (M), 306 and $[H^+]$ is the hydrogen ion concentration within the aerosol calculated from the pH (M), R 307 is the gas constant in cm³ atm K^{-1} mol⁻¹ (i.e. 82.05), T is the temperature in K, [ALWC] is the 308 aerosol liquid water content in µg m⁻³ (which is related to the ambient relative humidity), [PM] 309 is the mass concentration of PM_{2.5} in μ g m⁻³ and $[Cu^{2+}]_{eff}$ is the effective aerosol condensed-310 311 phase soluble copper (II) ion concentration in mol L⁻¹. 312 The Song parameterisation can reportedly be used for urban environmental conditions of aerosol mass concentrations between 10-300 µg m⁻³; aqueous copper (II) concentrations of 313 314

The Song parameterisation can reportedly be used for urban environmental conditions of aerosol mass concentrations between 10-300 μ g m⁻³; aqueous copper (II) concentrations of 10^{-5} –1 mol L⁻¹; and relative humidity between 40-90 %. However, for the Summer AIRPRO campaign data, the minimum [ALWC] supported by the parameterisation was 14μ g m⁻³, below which the parameterisation returned negative values for γ_{HO_2} . As such, despite the average calculated [ALWC] for the campaign being $6.9 \pm 10 \mu$ g m⁻³, a fixed value of 14μ g m⁻³ was used to calculate γ_{HO_2} across the entire campaign.

343

3 Results and Discussion

320	3.1 Overview of field observations during summer AIRPRO campaign
321	Radical concentration measurements were taken throughout the official science period of the
322	summer campaign, from 23/05/2017 to 22/06/2017, using the Fluorescence Assay by Gas
323	Expansion technique. Alongside the radical observations and photolysis rate measurements
324	made by the University of Leeds, there was a varied suite of supporting measurements operated
325	by several universities and institutions. The supporting measurements used for the analysis and
326	discussion in this study were provided chiefly by the Universities of York, Birmingham and
327	Cambridge as detailed in Table 2.
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	

Instrument	Species measured	University	Reference		
FAGE	OH, HO ₂ , RO ₂	Leeds	Whalley et al., 2010; Whalley		
			et al., 2021; Slater et al., 2020		
OH reactivity	OH reactivity	Leeds	Stone et al., 2016; Whalley et		
			al., 2021; Slater et al., 2020		
Spectral Radiometer	Photolysis rates	rates Leeds Bol			
Filter Radiometer	$j(O^1D)$	Leeds	Whalley et al., 2010		
Teledyne CAPS	NO ₂	York	Smith et al., 2017		
TEI 42c	Total NO _y	York	Smith et al., 2017		
TEI 49i	O ₃	York	Smith et al., 2017		
Sensor box	СО	York	Smith et al., 2017		
DC-GC_FID	C ₂ -C ₇ VOCs and oVOCs	York	Hopkins et al., 2011		
GCxGC-FID	C ₆ -C ₁₃ VOCs and oVOCs	York	Dunmore et al., 2015		
BBCEAS	HONO	Cambridge	Le Breton et al., 2014		
TEI 42i	NO	Birmingham	-		
LOPAP	HONO	Birmingham	Crilley et al., 2016		
SMPS	PS Particle Size distribution		Wiedensohler et al., 2012		
High volume sampler	PM _{2.5} filter samples, Aerosol	IAP	-		
	copper				

Table 2. Measurements taken by universities and institutions during the Beijing Summer AIRPRO campaign. These species are directly referred to in this chapter: full description of every instrument and measurement taken can be found in Slater, 2020. IAP: Institute of Atmospheric Physics, Beijing. Time resolution of all instruments was averaged up to or interpolated down to 15 minutes for modelling purposes with the exception of the PM_{2.5} filter samples, of which there was only 1 sample taken a day.

The median average diurnals for important gas phase species (ppb) and $j(O^1D)$ (s⁻¹) measured during the summer campaign are shown in Figure 1. $j(O^1D)$ showed a maximum at solar noon peaking at 2.5×10^{-5} s⁻¹. The diurnal variation in both NO and NO₂ was very distinct, with a peak in NO at rush hour (~08:00) of ~ 8 ppb. NO decreased into the afternoon following this morning peak to a minimum of 0.3 ppb. The low values of NO mixing ratio observed in the afternoon were a result of high levels of O₃, peaking at 89 ppb at ~15:30, leading to increased titration of NO + O₃ to give NO₂, the diurnal of which can be seen to peak in the morning at ~ 32 ppb at 06:30, coinciding with peak in traffic emissions. Conversely O₃ mixing ratio was at a minimum of ~14 ppb during the morning traffic peak in NO. Due to the expected

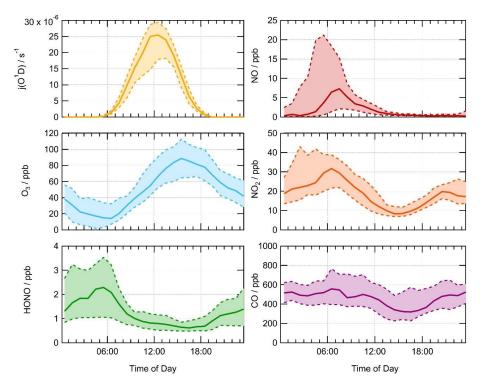
359

360

361362

363

364


365

366367

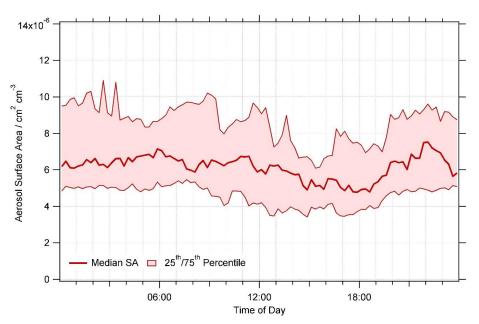
368369

370

accumulation of HONO overnight, HONO mixing ratio is highest in the morning, peaking before 07:30 at \sim 7 ppb, after which HONO is lost rapidly via photolysis to give OH + NO. This study will use these measured observations to compare modelled and measured concentrations of OH, HO₂ and RO₂ radicals and investigate the effect of HO₂ uptake on radical concentrations.

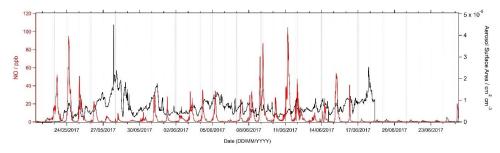
Figure 1. Average median diurnal profile for measured j(O¹D) (s⁻¹), O₃ (ppb), HONO (ppb), NO (ppb), NO₂ (ppb) and CO (ppb) for the Summer AIRPRO campaign. The dashed lines with shaded regions represent the 25th/75th percentiles. Diurnals show 60 minute averages, taken over the entire measurement period.

The majority of the Summer Beijing campaign occurred during a non-haze period, meaning PM_{2.5} concentrations remained below 75 μ g m⁻³, only exceeding this on the 28/05, 31/05, 05/06, 07/06, 17/06 and 18/06/2017. The average median diurnal of PM_{2.5} surface area (cm² cm⁻³) is shown in Figure 2. PM_{2.5} surface area concentration was available at a higher resolution due to use of online particle sizers compared to filter samples taken daily to give PM_{2.5} mass concentration. PM_{2.5} surface area was then averaged up to a time resolution of 15 minutes to be used in the model. No strong diurnal trend was seen, with an average across the campaign of 5.5 × 10⁻⁶ cm² cm⁻³, with a maximum surface area of 2.5×10⁻⁵ cm² cm⁻³.



372

373


374375

376

Figure 2. Average median diurnal of $PM_{2.5}$ aerosol surface area (cm² cm⁻³) for Summer AIRPRO campaign. Data averaged up to 15 mins time resolution. The dashed lines with shaded regions represent the $25^{th}/75^{th}$ percentiles.

During haze periods in Beijing, it is expected that a strong correlation would exist between PM_{2.5} and NO_x, as seen in Winter Beijing AIRPRO campaign in 2016 (Slater et al., 2020). However, during the Summer campaign, no strong correlation between PM_{2.5} and NO_x was seen. The time series of NO (ppb) and PM_{2.5} (cm² cm⁻³) is shown in Figure 3. A correlation plot of PM_{2.5} aerosol surface area (cm² cm⁻³) versus NO and NO₂ mixing ratio (ppb) is shown in Figure 1 of Supplementary Information.

 $\label{eq:main_problem} \textbf{Figure 3.} \ \text{Time series of measured NO/ppb and PM}_{2.5} \, / \, \text{cm}^2 \, \text{cm}^{-3} \ \text{across entire summer AIRPRO campaign in Beijing.}$

378

379380

381

382

383

384

385

386

387388

389390

391

392

393394

395

396

397

398

399

3.2 Calculated γ_{HO_2} for summer AIRPRO campaign

Measured values of [PM], copper (II) ion concentration and aerosol pH (used to calculate H_{eff} in equation 1), and values of [ALWC] estimated using the ISORROPIA-II thermodynamic equilibrium model (Fountoukis and Nenes, 2007) were input into the parameterisation at a time resolution of 1 day. PM_{2.5} mass concentration and Cu (II) ion concentration values were measured by extracting from filter samples offline with one filter sample taken every day. As such all measured values input into the parameterisation were averaged up to this time resolution. R_d was calculated from the measured aerosol size distribution across the entire campaign. A value of 0.5 was chosen for the mass accommodation coefficient, a_{HO_2} , to reflect values previously measured for copper doped inorganic salts (Thornton and Abbatt, 2005; George et al., 2013; Taketani et al., 2008) and to allow better comparison with results from Song et al., 2020. For summer AIRPRO campaign, the soluble copper ion concentration was measured by extracting Cu (II) ions from filter samples and analysing the effluent using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). As in Song et al., 2020, the total copper (II) mass concentration (ng m⁻³ converted to g m⁻³) was divided by the aerosol volume concentration (nm³ cm⁻³ converted to dm³ m⁻³) and the molar mass of copper (g mol⁻¹) to give the total copper molar concentration in the aerosol, [Cu²⁺]_{eff} (mol L⁻¹), which was then used in equation 1. The average values across summer AIRPRO campaign for parameters used in equation 1 are shown in Table 3.

Parameter	Average value across campaign
Temperature (K)	300
Relative humidity (%)	43
Aerosol pH	3
Count median radius (cm)	2.3×10 ⁻⁶
ALWC (μg m ⁻³) ^a	14
[PM] (µg m ⁻³)	38.3
[Cu ²⁺] _{eff} (mol L ⁻¹)	0.0008
$[Cu^{2+}]_{eff} (ng m^{-3})$	4
a_{HO_2}	0.5 (fixed)

Table 3. Average values for summer AIRPRO campaign in Beijing, 2017 for parameters in equation 1. ^aThis was a fixed minimum value of ALWC for the parameterisation to be used for this data set, fully explained in Section 3.4. Cu (II) ion concentration is given in both mol L⁻¹ and ng m⁻³, due to mol L⁻¹ being used in equation 1 but ng m⁻³ being the more atmospherically relevant unit.

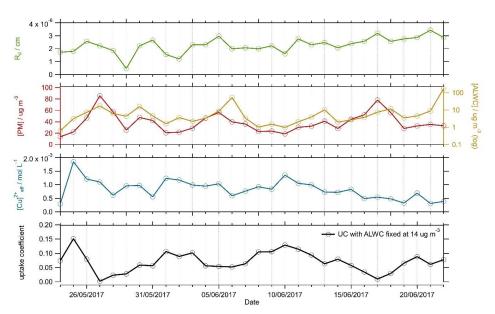
405

406

407

408

409


410

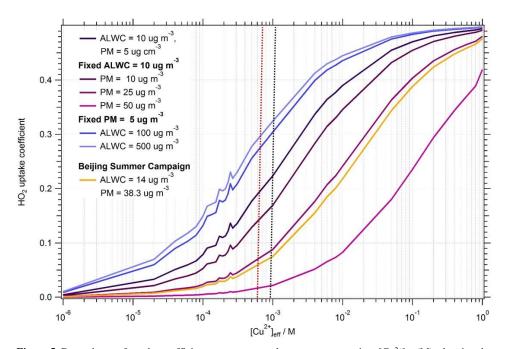
411412

For the Beijing summer AIRPRO campaign, an average value of γ_{HO_2} = 0.07 ± 0.035 (1 σ) was calculated across the entire campaign, with values ranging from 0.002 to 0.15. The time series for the calculated γ_{HO_2} , R_d (cm), [PM] (μ g m⁻³), [ALWC] (μ g m⁻³) and [Cu²⁺]_{eff} (mol L⁻¹) is shown in Figure 4.

As fully described in Song et al., 2020 supplementary information, the uncertainty in the calculation of γ_{HO_2} using equation 1 comes mainly from the uncertainty in [ALWC] (~10-20 %, calculated using ISORROPIA-II (Fountoukis and Nenes, 2007)), the uncertainty in the mass accommodation coefficient (varying a_{HO_2} within the parameterisation from 0.1 to 1, increased the calculated γ_{HO_2} from 0.042 to 0.077. However, by a_{HO_2} = 0.5 this dependence has begun to plateau with γ_{HO_2} = 0.070 when a_{HO_2} =0.5), and the uncertainty of the model calculations used to formulate the parameterisation (~40 % as explained in Song et al., 2020). Uncertainties in measured parameters i.e. temperature, [PM], [Cu²⁺] and count median radius are due to associated instrumental error which are assumed small in comparison.

Figure 4. Time series of R_d (cm, orange), [PM] (μ g m⁻³, red), [ALWC] (μ g m⁻³, yellow) and [Cu²⁺]_{eff} (mol L⁻¹, blue), parameters used in equation 1 to calculate γ_{HO_2} (bottom panel). Each parameter has been averaged up to a time resolution of 1 day to match the lowest resolution measurement. The calculated γ_{HO_2} is shown in the bottom panel, for a fixed [ALWC] = 14 ug m⁻³ (solid black line).

To examine the effect within the Song parameterisation of [PM] and [ALWC] on γ_{HO_2} as a function of copper molarity, the uptake coefficient was calculated by varying the [Cu²⁺]_{eff}


https://doi.org/10.5194/acp-2022-800 Preprint. Discussion started: 14 December 2022 © Author(s) 2022. CC BY 4.0 License.

415 concentration within the parameterisation with alternatively fixed values of [PM] or [ALWC]. For a given value of [Cu²⁺]_{eff}, at fixed [ALWC] an increase in [PM] causes a decrease in the 416 curvature of γ_{HO_2} vs [Cu²⁺]_{eff}, whereas at a fixed [PM], an increase in [ALWC] leads to an 417 increase in γ_{HO_2} for a given [Cu²⁺]_{eff}. As shown in Figure 5, [AWLC] and [PM] have the 418 greatest effect on γ_{HO_2} between $[Cu^{2+}]_{eff} = 10^{-5} - 10^{-1} M$ before the curve levels off towards the 419 mass accommodation coefficient of 0.5, as input into the model. For context within the Beijing 420 campaign, the curve of γ_{HO_2} vs $[Cu^{2+}]_{eff}$ was plotted in Figure 5 using the average values for 421 the AIRPRO summer campaign fixed at [ALWC] = 14 ug m⁻³ and [PM] = 38.3 ug m⁻³. For the 422 average AIRPRO summer campaign values, an increase $[Cu^{2+}]_{eff}$ has the most effect on γ_{HO} 423 between $[Cu^{2+}]_{eff} \sim 10^{-3} - 10^{-1} M$, with the average $[Cu^{2+}]_{eff}$ for the campaign being $8 \times 10^{-4} M$ 424 (values ranged from 3×10^{-4} to 2×10^{-3} M across campaign). 425 426 427 428 429 430 431 432

Figure 5. Dependence of uptake coefficient, γ_{HO_2} on aerosol copper concentration, [Cu²⁺]_{eff} (M), showing the effect of varying [PM] with fixed [ALWC] and vice versa. Pink to purple lines show the effect on uptake coefficient of varying [PM] from 5-50 μg m⁻³ with a fixed [ALWC] of 10 g cm⁻³. Blue to dark blue lines show the effect on γ_{HO_2} of varying [ALWC] from 10-500 ug m⁻³ (much higher than typically seen atmospherically) with a fixed [PM] of 5 μg m⁻³. The yellow line shows the effect on the γ_{HO_2} of varying [Cu²⁺]_{eff}, with [ALWC] and [PM] taken as the averages from the Beijing campaign, i.e. [ALWC] = 14 ug m⁻³ and [PM] = 38.8 ug m⁻³. Black dashed line indicates the average [Cu²⁺] _{eff} for Beijing summer campaign. Red dashed line indicates the average [Cu²⁺] _{eff} for the Wangdu campaign. Note that the [PM] and [ALWC] are both higher for Wangdu campaign compared to the Beijing campaign.

3.3 Box modelling results

433

434

435436

437

438 439

440

441

3.3.1 Effect of calculated γ_{H0_2} on modelled AIRPRO Summer radical concentrations

As reported in Whalley et al., 2021, radical concentrations were high during the AIRPRO summer campaign with maximum measured concentrations of OH, HO₂ and RO₂ of 2.8×10^7 molecule cm⁻³, 1×10^9 molecule cm⁻³ and 5.5×10^9 molecule cm⁻³ on the afternoons of the 30^{th} May, 9^{th} June and 15^{th} June respectively. The time series of measured OH, HO₂ and RO₂ for the entire summer campaign as measured by the Leeds FAGE instrument with MCM_base model outputs for OH, HO₂ and RO₂ can be found in Whalley et al., 2021. Using the MCM and the γ_{HO_2} calculated for the Summer Beijing campaign with the Song parameterisation, the

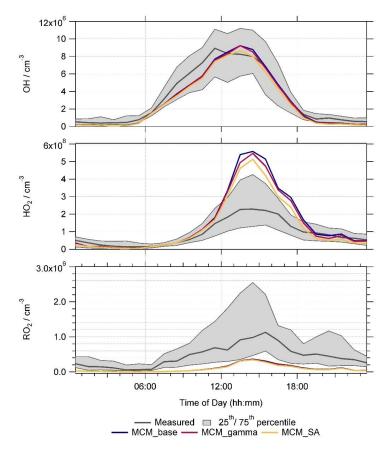
442 effect of HO2 uptake on the concentration of OH, HO2 and RO2 radicals was investigated and 443 compared to the base model. 444 The MCM_base model predicted radical concentrations are shown as average diurnal profiles 445 compared to both the measured diurnals and the MCM_gamma model in Figure 6. A detailed description of the diurnal variation in measured and modelled OH, HO2 and RO2 radicals for 446 447 the summer Beijing campaign is given in Whalley et al., 2021, so only a brief summary will be 448 given here. 449 The average diurnal profiles show that the MCM base model can re-produce the measured OH 450 concentrations relatively well, however the modelled peak in OH is shifted to the afternoon 451 with a peak at ~14:00 compared to the midday peak in the observations. In comparison, HO₂ 452 is over-predicted, particularly during the day with the exception being when NO was high from 9-12th June. Day-time HO2 is over-predicted on average by MCM base by up to a factor of 453 ~2.9 with a peak in the diurnal at ~ 14:30. In-comparison, daytime RO₂ concentration is under-454 455 predicted on average by MCM_base by up to a factor of ~7.5, with a larger under-prediction 456 in the morning between ~6:30-10:30 when NO levels were highest. At the peak of the RO₂ 457 diurnal, on average the concentration was under-predicted by MCM_base by a factor of ~2.7. 458 While the MCM_base model is able to reproduce measured OH concentrations reasonably 459 well, the inability of this model to reproduce HO2 and RO2 suggests missing key reactions. In 460 Whalley et al., 2021, budget analysis highlighted a missing source of OH, in addition to a missing RO₂ production reaction which could partially explain the under-prediction of RO₂ by 461 462 the MCM base model. It was also suggested that the over-prediction of HO₂ could be due, in part, to an under-prediction in the rate of reaction of RO2 with NO to produce a different RO2 463 464 species, i.e. RO₂+NO→RO₂', which would lead to propagation of RO₂ to different, more oxidised RO₂ species, competing with the recycling of RO₂ via RO to give HO₂, or due to lack 465 466 of RO₂ autoxidation pathways within the model which could lead to the formation of highly 467 oxygenated molecules as opposed to HO2. The higher measured RO2 concentrations could, therefore, suggest that the lifetime of total RO₂ is longer than currently considered in the model. 468 469 As stated in Section 3.3, for the Beijing summer AIRPRO campaign, values of calculated γ_{HO_2} 470 varied ranging from 0.002 to 0.15, giving an average value of γ_{HO_2} = 0.07 ± 0.035 (1 σ) across 471 the campaign. These γ_{HO_2} values calculated on a daily time resolution, were added into the 472 MCM_base model to give the MCM_gamma model. The average median diurnals of modelled

476

477

478

479


480

481

482

OH, HO₂ and RO₂ (molecule cm⁻³) for MCM_base, MCM_gamma (with γ_{HO_2} ranging from 0.002-0.15) and MCM_SA (with γ_{HO_2} fixed at 0.2) are shown in Figure 6.

Figure 6. Average median diurnals for measured radical concentrations (grey) and modelled OH, HO₂ and total RO₂ radical concentrations in molecule cm⁻³ for MCM_base (blue), MCM_gamma (dark pink) and MCM_SA (yellow) model runs. All diurnal's are 60 minute averages, taken over the entire measurement period. Shaded grey regions represent the 25th/75th percentiles of measured radical data.

Due to a combination of the calculated uptake coefficient being smaller, on average, than usually used within models (i.e < 0.2), and the high NO_x levels, little effect on average radical diurnals was seen by adding in HO_2 aerosol uptake into the model. Figure 6 shows that the OH and RO_2 radical concentrations were not significantly affected on average across the campaign by the addition of aerosol uptake. The average median diurnal of HO_2 can be seen as slightly decreased, i.e. the over-prediction of HO_2 is slightly less for MCM_gamma compared to MCM_base, with the over-prediction decreasing from a factor of ~2.9 to ~2.4 at the 14:30 peak in the diurnal.

Due to the recycling of RO₂ to HO₂ and then back to OH by NO, it is important to consider the dependency of radicals on NO and whether the addition of the HO₂ uptake coefficient has an effect on the model's ability to predict the dependency of radical concentrations on NO. The dependency of measured/modelled OH, HO₂ and RO₂ on NO mixing ratio is discussed fully for the MCM_base model in Whalley et al., 2021. Figure 7 shows the ratio of measured to modelled OH, HO₂ and RO₂ radical concentrations binned against NO mixing ratio (ppb) for MCM_gamma, compared to MCM_base.

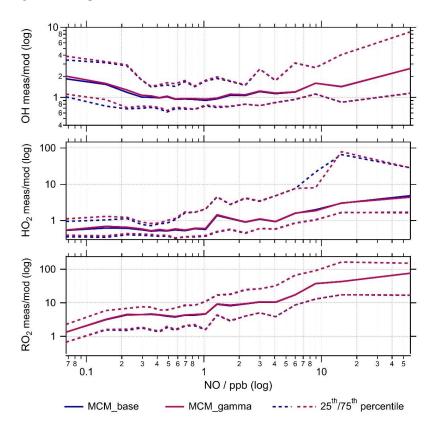
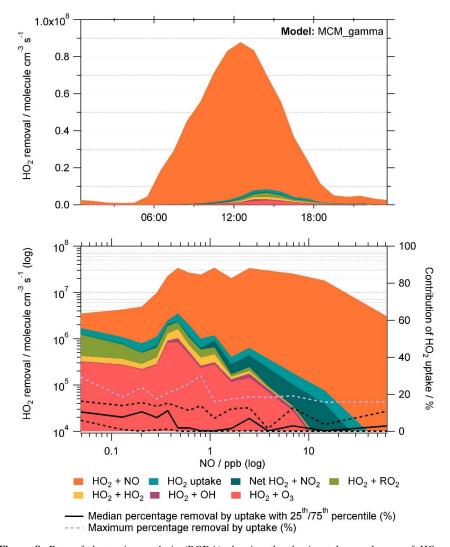


Figure 7. Ratio of measured to modelled OH, HO_2 and RO_2 radical concentrations using the MCM_base (blue) and MCM_gamma (dark pink) model binned over the range of NO mixing ratios (ppb) for the summer AIRPRO campaign. Solid lines show the median average measured to modelled radical concentration. Dashed lines show the $25^{th}/75^{th}$ percentiles.

For the range of NO mixing ratios observed across the summer AIRPRO campaign, the OH measured to modelled ratio is close to 1 between ~0.3 and 2 ppb NO with the MCM_base model beginning to under-predict OH slightly both below 0.3 ppb NO and above 2 ppb NO. Both HO₂ and RO₂ radical concentrations were strongly dependent on NO mixing ratio, with

494 the model over-predicting HO₂ below ~ 1 ppb NO. For the entire campaign the average NO 495 was 4.7 ppb with 45% of NO measurements taken across campaign being less than or equal to 496 1 ppb. Across all NO mixing ratios the measured to modelled ratio for RO₂ shows a large 497 under-prediction, with the largest under-prediction at the highest NO mixing ratios. This is likely contributing to the underprediction of HO₂ at higher NO mixing ratios. From Figure 7 it 498 499 can be seen that the addition of the calculated HO₂ uptake coefficient has had little effect across the range of NO mixing ratios measured during the summer AIRPRO campaign. 500 501 To showcase any effect adding HO₂ aerosol uptake would have on HO₂ loss pathways as a 502 whole, and thereby make a judgement on the effect of decreased PM_{2.5} and hence HO₂ loss via 503 aerosol surfaces on the O₃ production within Beijing, a rate of destruction analysis (RODA) 504 was done for MCM_gamma. The loss pathways of HO2 within MCM_gamma are shown in Figure 8 as an average median diurnal and as a function of NO mixing ratio (ppb), in addition 505 506 to the percentage contribution of HO₂ uptake to the overall loss of HO₂ within the model.


507

509

510

511512

Figure 8. Rate of destruction analysis (RODA) showing the dominant loss pathways of HO₂ within MCM_gamma shown as (a) a diurnal variation and (b) as a function of NO mixing ratio (ppb). Median removal of HO₂ by uptake (%) as a function of NO (ppb) is shown as solid black line in (b), with 25th/75th percentile shown as the black dashed lines. Maximum percentage removal by uptake for a given NO mixing ratio is shown as a lilac dashed line.

As shown in the RODA, the dominant loss pathway of HO_2 is $HO_2 + NO$ across the entire campaign (90 ± 14 % of total loss), followed by $HO_2 + RO_2$ (3.5 ± 8.1 % of total loss). This is expected due to high levels of NO_x in Beijing, especially during the day. As seen in the RODA diurnal, the $HO_2 + NO$ loss pathway peaks at midday following the morning peak in NO mixing ratio due to rush hour traffic. As NO mixing ratio decreases, the relative importance of other

526

527

528

529

530

531

532

541

loss pathways of HO₂ increases. At the lowest NO mixing ratio, i.e. < 0.1 ppb NO, the loss 513 514 pathways of HO₂ within MCM_gamma with the largest contribution to total loss were HO₂ + 515 NO $(55 \pm 19 \%)$, HO₂ + RO₂ $(23 \pm 17 \%)$ and HO₂ + O₃ $(9.3 \pm 4.1 \%)$. It is worth noting that 516 as the NO mixing ratio decreases the relative importance of HO₂ removal by O₃ increases 517 presumably due to the titration reaction of O₃ with NO decreasing (and hence higher observed 518 $[O_3]$). This could be important when considering policy changes with NO_x pollution in China 519 decreasing in recent years. The contribution of the various loss pathways of HO₂ to total HO₂ 520 loss within MCM_gamma under low (< 0.1 ppb) and high (>0.1 ppb) NO are compared in 521 Table 4.

	HO ₂ +O ₃	НО2+ОН	HO ₂ +HO ₂	HO ₂ +RO ₂	Net HO ₂ +NO ₂	HO ₂ +NO	uptake
Low NO (< 0.1 ppb)	9.3 ± 4.1	0.1 ± 0.1	3.0 ± 1.8	23 ± 17	2.4 ± 3.0	55 ± 19	7.3 ± 7.3
High NO (> 0.1 ppb)	1.8 ± 2.3	0.2 ± 0.3	0.8 ± 1.3	2.0 ± 4.4	0.4 ± 1.2	93 ± 9.0	1.9 ± <0.01

Table 4. Average relative percentage contribution of individual HO₂ loss pathways to the total loss of HO₂ within MCM_gamma, averaged for days when NO was low, (< 0.1 ppb) and high (> 0.1 ppb). Net HO₂+NO₂ refers to HO₂+NO₂→HO₂NO₂ minus HO₂NO₂→HO₂+NO₂.

Though there is not a strong dependence of HO_2 aerosol uptake loss pathway on NO mixing ratio for the calculated γ_{HO_2} (av. 0.07 ± 0.035) within MCM_gamma, it can be seen that at the lowest NO mixing ratios an average of ~7 % of total HO_2 loss is due to uptake, with a maximum at the lowest NO of ~29% (shown as lilac dashed line in Figure 8). This is a significant loss of HO_2 , especially on days where the NO mixing ratio is low and the aerosol surface area is high, highlighting that the uptake of HO_2 onto aerosols could be important, and will be increasingly so at lower NO.

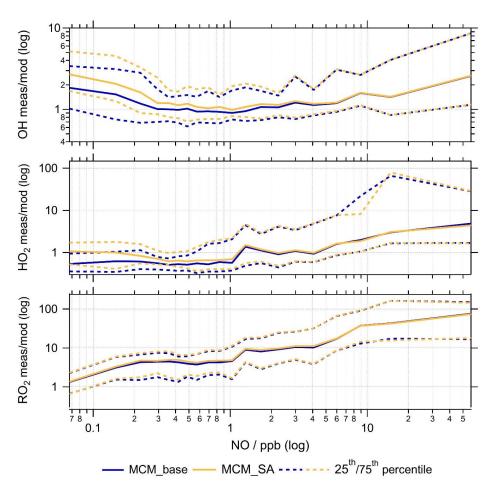
3.3.2 Comparison to γ_{HO_2} fixed at 0.2

533 While the maximum γ_{HO_2} calculated using the Song parameterisation for the summer AIRPRO 534 campaign was 0.15, to provide context with previous modelling studies, the commonly used 535 fixed value of γ_{HO_2} = 0.2 was added into the MCM_base model to give the MCM_SA model. The average median diurnals of modelled OH, HO₂ and RO₂ (molecule cm⁻³) for MCM_base, 536 537 MCM_gamma and MCM_SA are shown in Figure 6. 538 In comparison to calculated γ_{HO_2} in MCM_gamma, a fixed γ_{HO_2} = 0.2 had a more significant 539 effect on radical concentrations. While the median diurnal shows that the RO2 concentration 540 was not significantly affected by the addition of HO₂ uptake, the over-prediction seen in the

average median HO₂ concentration compared to the measurements at the 14:30 peak decreased

https://doi.org/10.5194/acp-2022-800 Preprint. Discussion started: 14 December 2022 © Author(s) 2022. CC BY 4.0 License.

542 from a factor of ~2.9 in MCM_base to ~2.3. OH radical concentrations were still relatively 543 well reproduced with early afternoon OH concentrations predicted better though this is due to 544 a shift in the modelled peak compared to the measured concentration peaking at midday. 545 As seen in Figure 9, the addition of γ_{HO_2} = 0.2 affected the ability of the model to reproduce 546 the NO dependence of radical concentrations. While MCM_base over-predicts HO₂ below ~ 1 547 ppb NO, the over-prediction of HO₂ decreases below 1 ppb NO for MCM_SA with HO₂ being 548 well reproduced at the lowest NO mixing ratios (i.e. < 0.1 ppb) due to the relative increase in the importance of HO₂ uptake as a sink of HO₂. Modelled RO₂ is not significantly affected by 549 550 the addition of HO₂ uptake at any NO mixing ratio. The modelled concentration of OH is under-551 predicted for the entire range of NO mixing ratios compared to measured values, though only slightly between ~ 1 and 6 ppb NO. Below ~ 4 ppb NO, the underprediction of OH by 552 553 MCM_SA increases compared to MCM_base due most likely to loss of HO2 onto aerosols competing with loss via NO to give OH. Budget analysis done by Whalley et al., 2021, 554 555 showcases that with a reduction in over-prediction of modelled HO2, OH is under-predicted 556 revealing a missing OH source.



558

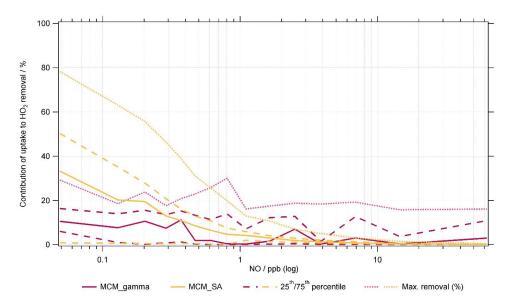
559560

561

562563

Figure 9. Ratio of measured to modelled OH, HO_2 and RO_2 radical concentrations using the MCM_base (blue) and MCM_SA (yellow) model binned over the range of NO mixing ratios (ppb) for the summer AIRPRO campaign. Solid lines show the median average measured to modelled radical concentration. Dashed lines show the $25^{th}/75^{th}$ percentile.

Analysis of the RODA for MCM_SA shows that with γ_{HO_2} = 0.2 HO₂ aerosol uptake is a significant contributor to total loss of HO₂ (8.1 ± 13 %, averaged for all NO mixing ratios). However, for all NO mixing ratios HO₂ + NO is still the dominant loss pathway (86 ± 18 %), as expected. At the lowest NO mixing ratios (i.e. < 0.1 ppb) an average of ~29 % of total HO₂ loss is due to uptake, with a maximum at the lowest NO of ~78%, shown in Figure 10. The contribution of the various loss pathways of HO₂ to total HO₂ loss within MCM_gamma under low (< 0.1 ppb) and high (>0.1 ppb) NO are compared in Table 5. The comparison of



percentage contribution of HO₂ uptake to total HO₂ removal binned against NO mixing ratio (ppb) for MCM_gamma and MCM_SA RODA is shown in Figure 10.

	HO ₂ +O ₃	НО2+ОН	HO ₂ +HO ₂	HO ₂ +RO ₂	Net HO ₂ +NO ₂	HO ₂ +NO	uptake
Low NO (< 0.1 ppb)	6.9 ± 3.5	0.1 ± 0.1	1.7 ± 1.4	17 ± 14	1.6 ± 2.2	44 ± 24	29 ± 24
High NO (> 0.1 ppb)	1.8 ± 2.1	0.2 ± 0.2	0.6 ± 1.0	1.7 ± 3.8	0.4 ± 1.0	89 ± 13	6.5 ± 9.7

Table 5. Average relative percentage contribution of individual HO₂ loss pathways to the total loss of HO₂ within MCM_SA (fixed $\gamma_{HO_2} = 0.2$), averaged for days when NO was low, (< 0.1 ppb) and high (> 0.1 ppb). Net HO₂+NO₂ refers to HO₂+NO₂—HO₂NO₂—HO₂NO₂—HO₂+NO₂.

Figure 10. Average percentage contribution of HO_2 uptake to total HO_2 removal within MCM_gamma (pink line, $\gamma_{HO_2} = 0.070 \pm 0.035$) and MCM_SA model (yellow line, $\gamma_{HO_2} = 0.2$) for Summer AIRPRO campaign plotted as a function of NO mixing ratio (ppb). Dashed lines represent the $25^{th}/75^{th}$ percentiles. Dotted lines represent maximum removal.

3.3.3 Effect of γ_{HO_2} on the O₃ regime

569

570

571

572573

574

575

3.3.3.1 Calculation of L_N/Q and absolute O₃ sensitivity

First introduced by Kleinman et al., 1997, L_N/Q is the ratio of radical loss via NO_x to total primary radical production and is used as a means of determining O_3 production sensitivity to VOCs and NO_x (Kleinman, 2000; Kleinman et al., 1997; Kleinman et al., 2001). This method was then built on by Sakamoto et al., 2019 who included loss of peroxy radicals ($XO_2=HO_2+RO_2$) onto aerosol surfaces within the calculation of O_3 sensitivity.

- 576 The only source of tropospheric O₃ is by the reaction of peroxy radicals with NO, while the
- main source of XO₂ species is via the reaction of OH with VOCs.

$$XO_2 + NO \rightarrow XO + NO_2 \tag{R 1}$$

$$OH + VOC + O_2 \rightarrow XO_2 + products$$
 (R 2)

The O_3 production rate in the troposphere is therefore:

$$P(O_3) = k_{HO_2 + NO}[HO_2][NO] + k_{RO_2 + NO}[RO_2][NO]$$
 (2)

- 579 where k_{HO_2+NO} and k_{RO_2+NO} are the bimolecular rate constants for the reaction of HO₂ and
- 580 RO₂ with NO.
- The production rate of OH, HO₂ and RO₂ radicals, Q, must equal the loss rate:

$$Q = L_P + L_N + L_R \tag{3}$$

- where L_P is the loss rate of radicals onto aerosol particles, L_N is the loss rate of radicals via
- reaction with NO_x species and L_R is the loss rate of radicals via radical-radical reactions to give
- 584 peroxides.

$$L_P = k_{HO_2 untake}[HO_2] + k_{RO_2 untake}[RO_2] = k_P[XO_2]$$
(4)

$$L_N \approx k_{NO_2 + OH}[NO_2][OH] \tag{5}$$

$$L_R = 2(k_{HO_2 + HO_2}[HO_2]^2 + k_{RO_2 + HO_2}[HO_2][RO_2])$$
 (6)

- where $k_{HO_2 uptake}$ is the rate constant for the loss of HO₂ onto aerosol surfaces, $k_{RO_2 uptake}$ is
- 586 the rate constant for the loss of RO₂ onto aerosol surfaces, k_{NO_2+OH} is the bimolecular rate
- constant for the reaction of NO₂ with OH, $k_{HO_2+HO_2}$ is the bimolecular rate constant for the
- self-reaction of HO₂ and $k_{RO_2+HO_2}$ is the bimolecular rate constant for the reaction of RO₂ with
- 589 HO₂.
- 590 For radical loss onto aerosol surfaces, the rate constant is given as a function of the reactive
- uptake coefficient, γ_{XO_2} , aerosol particle surface area (cm² cm⁻³) and mean thermal velocity
- 592 (cm s⁻¹), given by $v = \sqrt{8RT/\pi M}$ with R, T and M as the gas constant, the absolute temperature
- and the molar mass of species respectively.

$$k_{radical\,uptake} = \frac{\gamma_{XO_2} \times SA \times \nu}{4} \tag{7}$$

- 594 According to the method described in Sakamoto et al., 2019, the ratio of radical loss to NO_x to
- primary O₃ production including radical loss via aerosol uptake, $\frac{L_N}{o}$ is defined as follows:

$$\frac{L_N}{Q} = \frac{1}{1 + \left(\frac{(2k_R[XO_2] + k_P)k_{OH + VOC}[VOC]}{(1 - \alpha)k_{HO_2 + NO}[NO]k_{NO_2 + OH}[NO_2]}\right)}$$
(8)

- 596 where k_{OH+VOC} is the bimolecular rate constant for the loss of OH via reaction with VOCs and
- 597 (1α) is the fraction of XO₂ that is HO₂.
- The relative sensitivity of O₃ production to NO_x and VOCs is described by:

$$\frac{\delta lnP(O_3)}{\delta ln [NO_x]} = (1 - \chi) \left(\frac{1 - \frac{3}{2} \frac{L_N}{Q}}{1 - \frac{1}{2} \frac{L_N}{Q}} \right) + \chi (1 - 2 \frac{L_N}{Q})$$
(9)

$$\frac{\delta lnP(O_3)}{\delta ln\left[VOC\right]} = (1 - \chi) \left(\frac{\frac{1}{2} \frac{L_N}{Q}}{1 - \frac{1}{2} \frac{L_N}{Q}}\right) + \chi \frac{L_N}{Q}$$
(10)

where $\chi = \frac{L_P}{L_P + L_R}$. The O₃ regime transition point, where $\frac{\delta lnP(O_3)}{\delta ln [NO_x]} = \frac{\delta lnP(O_3)}{\delta ln [VOC]}$, is given by $\frac{L_N}{Q_{trans}}$.

$$\frac{L_N}{Q_{trans}} = \frac{1}{2}(1 - \chi) + \frac{1}{3}\chi \tag{11}$$

- 600 Absolute O₃ sensitivity was introduced by Sakamoto et al., 2019, and allows for the assessment
- 601 of how reduction in O₃ precursors could contribute to reduction in P(O₃) by integrating over
- 602 time and area. The absolute sensitivity of O_3 production to VOC and NO_x is then described by:

Absolute
$$P(O_3) = \frac{\delta P(O_3)}{\delta \ln |X|} = P(O_3) \frac{\delta P(O_3)}{\delta \ln |X|}$$
 (12)

- where is [X] is NO_x or VOC.
- 604 $\frac{L_N}{o}$ was calculated for all model runs, MCM_base, MCM_gamma and MCM_SA using
- modelled [HO2] and [RO2] concentrations but measured values of [NO] and [NO2], to
- 606 investigate the effect on the O₃ regime of adding HO₂ aerosol uptake into the model. The time
- series of calculated $\frac{L_N}{Q}$ for all models, in addition to the regime transition point, $\frac{L_N}{Q_{trans}}$ for the
- entire campaign is shown in Figure 11.
- When $\frac{L_N}{Q} < \frac{L_N}{Q_{trans}}$, this is defined as a NO_x-sensitive regime, meaning that small changes in NO_x
- will affect the rate of in situ O_3 production. This can be seen on a few days across the campaign,
- 611 specifically in the afternoon, due to NO_x peaking in the morning due to traffic emissions before
- 612 rapidly decreasing in the afternoon which pushes the O₃ regime on certain days from VOC-

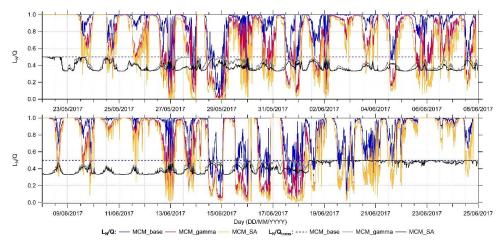
617

618

619 620

621

622


623

624

limited to NO_x-limited. However, for the majority of the campaign, the O₃ production regime is VOC-limited, for all models, meaning that O₃ production rates will not be significantly affected by small changes in NO_x.

Binning $\frac{L_N}{Q}$ against NO mixing ratio (ppb), in Figure 12, shows the change from VOC to NO_x-limited regime at very low NO mixing ratios for MCM_base, MCM_gamma and MCM_SA. As aerosol uptake is added the transition to NO_x-limited regime occurs at higher NO, with average median transition point occurring at ~ 0.2 ppb NO for MCM_gamma (average γ_{HO_2} = 0.070 ± 0.035) and at ~0.5 ppb NO for MCM_SA (fixed γ_{HO_2} = 0.2). This suggests that a reduction in PM (and therefore uptake of HO₂ onto aerosols) would delay the transition to a NO_x-sensitive regime until lower NO_x levels are reached. Therefore, any emissions policy aimed at reduced NO_x to decrease O₃ levels would not be as effective if PM is decreasing at the same time.

Figure 11. Time series of calculated $\frac{L_N}{Q}$ and $\frac{L_N}{Q_{trans}}$ values for MCM_base (blue), MCM_gamma (pink) and MCM_SA (yellow) models across the entire summer AIRPRO campaign. $\frac{L_N}{Q_{trans}}$ for MCM_gamma is shown as grey line, while $\frac{L_N}{Q_{trans}}$ for MCM_SA is the black line.

625

627

628 629

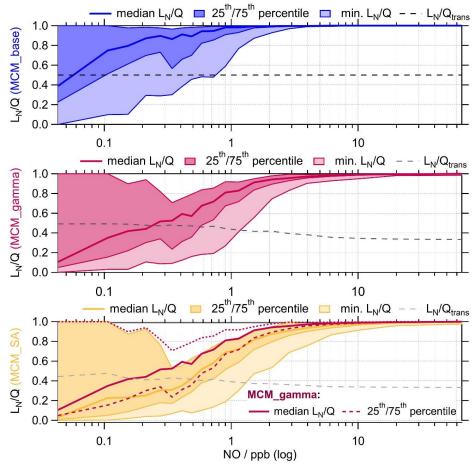


Figure 12. $\frac{L_N}{Q}$ for MCM_base (blue, top panel), MCM_gamma (pink, middle panel) and MCM_SA (yellow, bottom panel) binned against the log of measured NO mixing ratio for the entire summer AIRPRO campaign. $\frac{L_N}{Q_{trans}}$ for MCM_base (black dashed line) taken as 0.5 for entire range of NO mixing ratios. $\frac{L_N}{Q_{trans}}$ for MCM_gamma (dark grey dashed line) and MCM_SA (light grey dashed line) calculated using equation 11. $25^{\text{th}}/75^{\text{th}}$ percentiles and minimum $\frac{L_N}{Q}$ are plotted to show full spread of data for each model scenario.

The average median diurnal of absolute $P(O_3)$, $\frac{\delta P(O_3)}{\delta \ln{[X]}}$, for the MCM_gamma and MCM_SA over the entire campaign is shown in Figure 13. The time series of absolute $P(O_3)$, averaged up to a daily time resolution, across the entire measurement period can be found in Supplementary Information as SI Figure 2.

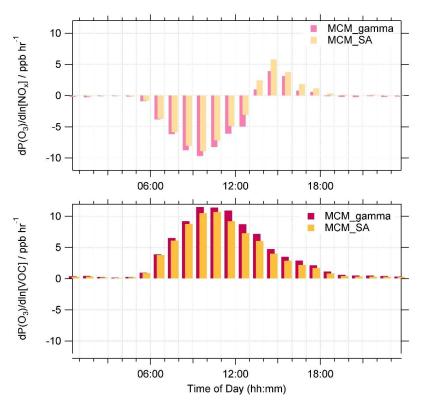
631

632

633

634

635


636 637

638

639

640

641

Figure 13. Average median diurnal of absolute O_3 sensitivity to NO_x (top panel) and VOC (bottom panel) in ppbV h^{-1} for MCM_gamma (pink) and MCM_SA (yellow) across the entire summer AIRPRO campaign. MCM_gamma includes γ_{HO_2} calculated using the Song parameterisation (av. 0.070 ± 0.035) while MCM_SA includes γ_{HO_2} at a fixed value of 0.2. All diurnals are 60 minute averages.

As expected from $\frac{L_N}{Q}$ calculations, calculations of absolute O₃ production sensitivity showcase that for both MCM_gamma and MCM_SA, on average, the O₃ regime was VOC sensitive throughout the day with NO_x sensitivity increasing in the afternoons. On a few days, when low NO mixing ratio coincided with high SA, the O₃ regime can be seen shifting from VOC to NO_x limited. An example of this can be found in SI Figure 3, for the 17/06/2017 and 18/06/2017 when the average NO mixing ratio was 0.41 ± 0.50 ppb and the average SA was $(8.4 \pm 6.2) \times 10^{-6}$ cm² cm⁻³. With an increase in γ_{HO_2} between MCM_gamma and MCM_SA, the sensitivity of O₃ regime to VOC decreased but sensitivity to NO_x increased. This effect could be important for areas where O₃ production regime is NO_x sensitive or less strongly VOC sensitive. With NO_x levels reportedly decreasing across China in recent years (Krotkov et al., 2016; Liu et al., 2016; Miyazaki et al., 2017; Van Der A et al., 2017), O₃ production regimes would be expected to move more towards NO_x-sensitive regimes in urban China. However, with concomitant

- reduction in PM (Ma et al., 2016b; Lin et al., 2018), this transition to a NO_x-sensitive regime
- may be delayed until lower NO_x levels are reached.
- 644 Our result for the Beijing campaign are consistent with the results of Song et al., 2022 which
- concluded that for the conditions of the Wangdu campaign the addition of HO_2 uptake does not
- change the overall O₃ sensitivity regime throughout the campaign. However, the shift in O₃
- sensitivity regime from VOC-limited to NO_x-limited from the consideration of HO₂ uptake
- could be important for areas with lower NO_x and high aerosol particle loading.

4 Conclusions

649

650 Using the Song parameterisation, the heterogeneous uptake coefficient of HO₂, γ_{HO_2} , was 651 calculated for the summer AIRPRO campaign in Beijing, 2017 as a function of measured [Cu²⁺]_{eff}, [ALWC] and [PM]. The calculated average $\gamma_{HO_2} = 0.070 \pm 0.035$ (ranging from 0.002) 652 653 to 0.15 across the campaign) was significantly lower than the fixed value of γ_{HO_2} = 0.2 654 commonly used in modelling studies. This calculated value was similar, however, to values calculated for the Wangdu 2014 summer campaign in China (Tan et al., 2020; Song et al., 655 656 2020). Using the calculated γ_{HO_2} , the OH, HO₂ and RO₂ radical concentrations were modelled 657 using the Master Chemical Mechanism, and compared to the measured campaign values, with 658 and without the addition of HO₂ aerosol uptake. Due to the low calculated value of γ_{HO_2} , and 659 the high levels of NO, rate of destruction analysis showed the dominant HO₂ loss pathway to 660 be HO₂ + NO for all NO mixing ratios with HO₂ uptake not contributing significantly to the 661 loss of HO₂ (< 2 %). However, at the lowest NO mixing ratios (i.e. < 0.1 ppb) HO₂ loss onto aerosols contributed up to a maximum of 29 % of the total HO₂ loss. Using the modelled HO₂ 662 663 and RO₂ radical concentrations for model scenarios with and without HO₂ uptake, showed that 664 on average the O₃ production regime was VOC-limited across the entire campaign with the exception of several days with low NO mixing ratio where the regime tended towards NO_x-665 limited, meaning that small changes in NO_x would not have a large effect on the O₃ production 666 for this summer period in Beijing, however changes in HO2 uptake could. While the addition 667 of the calculated uptake coefficient did not change the overall O₃ regime across the campaign, 668 with the O₃ production regime remaining strongly VOC-limited, the transition from a VOC-669 670 sensitive to NO_x -sensitive O_3 regime occurs at higher NO_x . This means that for Beijing, where 671 the O₃ production regime is strongly VOC-sensitive and NO_x levels are high, any policy 672 looking to reduce O₃ via the reduction of NO_x needs to consider concurrent PM reduction policies which may affect HO₂ uptake. In cleaner environments, where NO_x levels are lower, 673

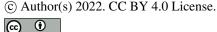
- but aerosol surface area is still high, lower values of γ_{HO_2} , i.e. less than 0.2, could have a more
- significant effect on both overall HO₂ concentration and the O₃ production regime.
- 676 Data availability. Data presented in this study can be obtained from authors upon request
- 677 (d.e.heard@leeds.ac.uk)
- 678 Author contributions. LKW, EJS, RWM, CY and DEH carried out the radical measurements.
- 679 LKW and EJS developed the model and JED performed the calculations. JDL, FS, JRH, RED,
- 680 MS, JFH, ACL, AM, SDW, AB, TJB, HC, BO, CJP, CNH, RLJ, LRC, LJK, WJFA, WJB, SS,
- 681 JX, TV, ZS, RMH, SK, SG, YS, WX, SY, LW, PF and XW provided logistical support and
- 682 supporting data to constrain the model. JED prepared the manuscript with contributions from
- all co-authors.
- 684 Competing interests. The authors declare that they have no conflict of interest.
- 685 Acknowledgements. We are grateful to the Natural Environmental Research Council for
- 686 funding a SPHERES PhD studentship (Joanna E. Dyson). We are grateful to Tuan Vu for
- providing supervision and supporting data.

5 References

- 689 Bohn, B., Heard, D. E., Mihalopoulos, N., Plass-Dülmer, C., Schmitt, R., and Whalley, L. K.:
- 690 Characterisation and improvement of j(O¹D) filter radiometers, Atmos. Meas. Tech., 9, 3455-
- 691 3466, https://doi.org/10.5194/amt-9-3455-2016, 2016.
- 692 Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F.,
- 693 Dingenen, R. v., Estep, K., Amini, H., Apte, J. S., Balakrishnan, K., Barregard, L., Broday,
- 694 D., Feigin, V., Ghosh, S., Hopke, P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., Ma, S.,
- 695 Morawska, L., Sangrador, J. L. T., Shaddick, G., Anderson, H. R., Vos, T., Forouzanfar, M.
- 696 H., Burnett, R. T., and Cohen, A.: Ambient Air Pollution Exposure Estimation for the Global
- 697 Burden of Disease 2013, Environ. Sci. Technol., 50, 79-88,
- 698 <u>https://doi.org/10.1021/acs.est.5b03709</u>, 2016.
- 699 Commane, R., Floquet, C. F. A., Ingham, T., Stone, D., Evan, M. J., and Heard, D. E.:
- 700 Observations of OH and HO₂ radicals over West Africa, Atmos. Chem. Phys., 10, 8783-8801,
- 701 https://doi.org/10.5194/acp-10-8783-2010, 2010.
- 702 Cooper, P. L. and Abbatt, J. P. D.: Heterogeneous Interactions of OH and HO2 Radicals with
- 703 Surfaces Characteristic of Atmospheric Particulate Matter, The Journal of Physical
- 704 Chemistry, 100, 2249-2254, https://doi.org/10.1021/jp952142z, 1996.

- 705 Crilley, L. R., Kramer, L., Pope, F. D., Whalley, L. K., Cryer, D. R., Heard, D. E., Lee, J. D.,
- Reed, C., and Bloss, W. J.: On the interpretation of in situ HONO observations via
- 707 photochemical steady state, Faraday Discuss., 189, 191-212,
- 708 <u>https://doi.org/10.1039/c5fd00224a</u>, 2016.
- 709 Dunmore, R., Hopkins, J., Lidster, R., Lee, J., Evans, M., Rickard, A., Lewis, A., and
- 710 Hamilton, J.: Diesel-related hydrocarbons can dominate gas phase reactive carbon in
- 711 megacities, Atmos. Chem. Phys., 15, 9983-9996, https://doi.org/10.5194/acp-15-9983-2015,
- 712 2015.
- 713 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J.,
- 714 Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Dorland,
- 715 R. V.: Chapter 2. Changes in atmospheric constituents and in radiative forcing. , Climate
- 716 Change 2007. The Physical Science Basis, 2007.
- 717 Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic
- equilibrium model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmos. Chem.
- 719 Phys., 7, 4639-4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
- 720 Fuchs, H., Holland, F., and Hofzumahaus, A.: Measurement of tropospheric RO₂ and HO₂
- 721 radicals by a laser-induced fluorescence instrument, The Review of scientific instruments, 79,
- 722 084104, https://doi.org/10.1063/1.2968712, 2008.
- 723 Gakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-
- 724 Allah, F., Abdulle, A. M., Abera, S. F., and Aboyans, V.: Global, regional, and national
- 725 comparative risk assessment of 84 behavioural, environmental and occupational, and
- 726 metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden
- 727 of Disease Study 2016, The Lancet, 390, 1345-1422, https://doi.org/10.1016/S0140-
- 728 <u>6736(18)32279-7</u>, 2017.
- 729 George, I. J., Matthews, P. S. J., Whalley, L. K., Brooks, B., Goddard, A., Baeza-Romero,
- 730 M., and Heard, D. E.: Measurements of uptake coefficients for heterogeneous loss of HO₂
- onto submicron inorganic salt aerosols., Phys. Chem. Chem. Phys., 15, 12829-12845,
- 732 https://doi.org/10.1039/c3cp51831k, 2013.
- Hopkins, J. R., Jones, C. E., and Lewis, A. C.: A dual channel gas chromatograph for
- atmospheric analysis of volatile organic compounds including oxygenated and monoterpene
- 735 compounds., J. Environ. Monit., 13, 2268-2276, https://doi.org/10.1039/C1EM10050E, 2011.
- 736 Ivatt, P. D., Evans, M. J., and Lewis, A. C.: Suppression of surface ozone by an aerosol-
- 737 inhibited photochemical ozone regime, Nat. Geosci, 15, 536-540,
- 738 https://doi.org/10.1038/s41561-022-00972-9, 2022.

- 739 Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131-
- 740 2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.
- 741 Jin, Y., Andersson, H., and Zhang, S.: Air Pollution Control Policies in China: A
- Retrospective and Prospects, Int. J. Environ. Res. Public Health, 13,
- 743 <u>https://doi.org/10.3390/ijerph13121219</u>, 2016.
- Kanaya, Y. G., Cao, R. Q., Kato, S. G., Miyakawa, Y. K., Kajii, Y., Tanimoto, H., Yokouchi,
- 745 Y., Mochida, M., Kawamura, K., and Akimoto, H.: Chemistry of OH and HO₂ radicals
- 746 observed at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO₂ and
- 747 positive nighttime correlations with monoterpenes, J. Geophys. Res. Atmos., 112, D11308,
- 748 https://doi.org/10.1029/2006JD007987, 2007.
- 749 Kleinman, L. I.: Ozone process insights from field experiments part II: Observation-based
- analysis for ozone production, Atmos. Environ., 34, 2023-2033,
- 751 https://doi.org/10.1016/S1352-2310(99)00457-4, 2000.
- 752 Kleinman, L. I., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Springston, S. R., Weinstein-
- 753 Lloyd, J., and Rudolph, J.: Sensitivity of ozone production rate to ozone precursors, Geophys.
- 754 Res. Lett., 28, 2903-2906, https://doi.org/10.1029/2000GL012597, 2001.
- 755 Kleinman, L. I., Daum, P. H., Lee, J. H., Lee, Y.-N., Nunnermacker, L. J., Springston, S. R.,
- 756 Newman, L., Weinstein-Lloyd, J., and Sillman, S.: Dependence of ozone production on NO
- and hydrocarbons in the troposphere, Geophys. Res. Lett., 24, 2299-2302,
- 758 <u>https://doi.org/10.1029/97GL02279</u>, 1997.
- 759 Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V.,
- 760 Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P.,
- 761 Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI
- 762 observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015, Atmos. Chem.
- 763 Phys., 16, 4605-4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
- 764 Lakey, P. S. J., George, I. J., Baeza-Romero, M., Whalley, L. K., and Heard, D. E.: Organics
- 765 substantially reduce HO₂ uptake onto aerosols containing transition metal ions., J. Phys.
- 766 Chem. A, 120, 1421-1430, https://doi.org/10.1021/acs.jcpa.5b06316, 2016.
- Lakey, P. S. J., George, I. J., Whalley, L. K., Baeza-Romero, M., and Heard, D. E.:
- 768 Measurements of HO₂ uptake coefficients onto single component organic aerosols..
- 769 Environmental Science Technology, 49, 4878-4885, https://doi.org/10.1021/acs.est.5b00948,
- 770 2015.
- 771 Le Breton, M., Bacak, A., Muller, J. B. A., Bannan, T. J., Kennedy, O., Ouyang, B., Xiao, P.,
- 772 Bauguitte, S. J. B., Shallcross, D. E., Jones, R. L., Daniels, M. J. S., Ball, S. M., and Percival,


- 773 C. J.: The first airborne comparison of N₂O₅ measurements over the UK using a CIMS and
- 774 BBCEAS during the RONOCO campaign, Analytical Methods, 6, 9731-9743,
- 775 https://doi.org/10.1039/C4AY02273D, 2014.
- 776 Levy, H.: Normal atmosphere: large radical and formaldehyde concentrations predicted,
- 777 Science, 173, 141-143, https://doi.org/10.1126/science.173.3992.141, 1971.
- 778 Li, H., Wang, D., Cui, L., Gao, Y., Huo, J., Wang, X., Zhang, Z., Tan, Y., Huang, Y., and
- 779 Cao, J. J. S. o. t. t. e.: Characteristics of atmospheric PM2. 5 composition during the
- 780 implementation of stringent pollution control measures in shanghai for the 2016 G20 summit,
- 781 648, 1121-1129, https://doi.org/10.1016/j.scitotenv.2018.08.219, 2019.
- 782 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K.: Anthropogenic drivers of
- 783 2013-2017 trends in summer surface ozone in China, Proceedings of the National Academy
- 784 of Sciences, 116, 422-427, https://doi/org/10.1073/pnas.1812168116, 2018.
- 785 Lin, C. Q., Liu, G., Lau, A. K. H., Li, Y., Li, C. C., Fung, J. C. H., and Lao, X. Q.: High-
- 786 resolution satellite remote sensing of provincial PM_{2.5} trends in China from 2001 to 2015,
- 787 Atmos. Environ., 180, 110-116, https://doi.org/10.1016/j.atmosenv.2018.02.045, 2018.
- 788 Liu, F., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., Yan, L., Zheng, Y., and He, K.:
- 789 Recent reduction in NO_x emissions over China: synthesis of satellite observations and
- 790 emission inventories, Environ. Res. Lett, 11, 114002, https://doi.org/10.1088/1748-
- 791 9326/11/11/114002, 2016.
- 792 Liu, Y.-H., Liao, W.-Y., Lin, X.-F., Li, L., and Zeng, X.-l.: Assessment of Co-benefits of
- vehicle emission reduction measures for 2015–2020 in the Pearl River Delta region, China,
- 794 Environ. Pollut., 223, 62-72, https://doi.org/10.1016/j.envpol.2016.12.031, 2017.
- 795 Ma, Z., Xu, J., Quan, W., Zhang, Z., Lin, W., and Xu, X.: Significant increase of surface
- ozone at a rural site, north of eastern China, Atmos. Chem. Phys., 16, 3969-3977,
- 797 https://doi.org/10.5194/acp-16-3969-2016, 2016a.
- 798 Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., and
- 799 Liu, Y.: Satellite-Based Spatiotemporal Trends in PM_{2.5} Concentrations: China, 2004-2013,
- 800 Environ. Health Perspect., 124, 184-192, https://doi.org/10.1289/ehp.1409481, 2016b.
- 801 Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe
- 802 redox coupling in aerosols, Atmos. Chem. Phys., 13, 509-519, https://doi.org/10.5194/acp-
- 803 13-509-2013, 2013.
- 804 Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Chair, J. M. S.,
- 805 Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J.
- 806 L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen,

© Author(s) 2022. CC BY 4.0 License.

- 807 G., Crawford, J. H., McHaughton, C., Clarke, A. D., Jaegle, L., Fisher, J. K., Yantosca, R.
- 808 M., LeSager, P., and Carouge, C.: Chemsitry of hydrogen oxide radicals (HO_x) in the artic
- 809 troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, https://doi.org/10.5194/acp-10-
- 810 <u>5823-2010</u>, 2010.
- 811 Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H.,
- Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter,
- 813 R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.:
- 814 OH and HO₂ concentrations, sources, and loss rates during the Southern Oxidants Study in
- Nashville, Tennessee, summer 1999, Journal of Geophysical Research: Atmospheres, 108,
- 816 https://doi.org/10.1029/2003JD003551, 2003.
- Matthews, P. S. J., Baeza-Romero, M., Whalley, L. K., and Heard, D. E.: Uptake of HO₂
- 818 radicals onto Arizona test dust particles using an aerosol flow tube, Atmos. Chem. Phys., 14,
- 819 7397-7408, https://doi.org/10.5194/acp-14-7397-2014, 2014.
- 820 Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal
- 821 changes in global surface NO_x emissions from multi-constituent satellite data assimilation,
- 822 Atmos. Chem. Phys., 17, 807-837, https://doi.org/10.5194/acp-17-807-2017, 2017.
- 823 Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G.: Mass accommodation
- coefficient for HO₂ radicals on aqueous particles, J. Geophys. Res., 92, 4163-4170,
- 825 https://doi.org/10.1029/JD092iD04p04163, 1987.
- 826 Sakamoto, Y., Sadanaga, Y., Li, J., Matsuoka, K., Takemura, M., Fujii, T., Nakagawa, M.,
- 827 Kohno, N., Nakashima, Y., Sato, K., Nakayama, T., Kato, S., Takami, A., Yoshino, A.,
- 828 Murano, K., and Kajii, Y.: Relative and Absolute Sensitivity Analysis on Ozone Production
- in Tsukuba, a City in Japan, Environ. Sci. Technol., 53, 13629-13635,
- 830 https://doi.org/10.1021/acs.est.9b03542, 2019.
- 831 Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han,
- 832 Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton,
- 833 W. J., Barlow, J., Barratt, B., Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D.,
- 834 Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Crilley, L., Coe, H., Dai, T., Doherty,
- 835 R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D.,
- Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., Kelly, F. J.,
- 837 Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., Lu,
- 838 K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E.,
- O'Connor, F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R.,
- 840 Shao, L., Shi, G., Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q.,

- 841 Wang, W., Wang, X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P.,
- 842 Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the special issue
- 843 "In-depth study of air pollution sources and processes within Beijing and its surrounding
- 844 region (APHH-Beijing)", Atmos. Chem. Phys., 19, 7519-7546, https://doi.org/10.5194/acp-
- 845 <u>19-7519-2019</u>, 2019.
- 846 Silver, B., Reddington, C. L., Arnold, S. R., and Spracklen, D. V.: Substantial changes in air
- pollution across China during 2015–2017, Environ. Res. Lett, 13, 114012,
- 848 https://doi.org/10.1088/1748-9326/aae718, 2018.
- 849 Slater, E. J.: Understanding radical chemistry in Beijing through observations and modelling,
- 850 School of Chemistry, University of Leeds, 2020.
- 851 Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins,
- 852 J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L.,
- 853 Bloss, W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang,
- 854 X., Fu, P., and Heard, D. E.: Elevated levels of OH observed in haze events during
- wintertime in central Beijing, Atmos. Chem. Phys. Discuss., 2020, 1-43,
- 856 <u>https://doi.org/10.5194/acp-2020-362</u>, 2020.
- 857 Smith, K. R., Edwards, P. M., Evans, M. J., Lee, J. D., Shaw, M. D., Squires, F., Wilde, S.,
- 858 and Lewis, A. C.: Clustering approaches to improve the performance of low cost air pollution
- 859 sensors, Faraday Discuss., 200, 621-637, https://doi.org/10.1039/C7FD00020K, 2017.
- 860 Sommariva, R., Haggerstone, A. L., Carpenter, L. J., Carslaw, N., Creasey, D. J., Heard, D.
- 861 E., Lee, J. D., Lewsi, A. C., Pilling, M. J., and Zador, J.: OH and HO₂ chemistry in clean
- marine air during SOAPEX-2, Atmos. Chem. Phys., 4, 839-856, https://doi.org/10.5194/acp-
- 863 4-839-2004, 2004.
- 864 Song, H., Lu, K., Dong, H., Tan, Z., Chen, S., Zeng, L., and Zhang, Y.: Reduced Aerosol
- 865 Uptake of Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to
- Volatile Organic Compounds, Environ. Sci. Tech. Letts., 9, 22-29,
- 867 https://doi.org/10.1021/acs.estlett.1c00893, 2022.
- Song, H., Chen, X., Lu, K., Zou, Q., Tan, Z., Fuchs, H., Wiedensohler, A., Moon, D. R.,
- 869 Heard, D. E., Baeza-Romero, M. T., Zheng, M., Wahner, A., Kiendler-Scharr, A., and Zhang,
- 870 Y.: Influence of aerosol copper on HO₂ uptake: a novel parameterized equation, Atmos.
- 871 Chem. Phys., 20, 15835-15850, https://doi.org/10.5194/acp-20-15835-2020, 2020.
- 872 Stone, D., Whalley, L. K., Ingham, T., Edwards, P. M., Cryer, D. R., Brumby, C. A., Seakins,
- 873 P. W., and Heard, D. E.: Measurement of OH reactivity by laser flash photolysis coupled

- with laser-induced fluorescence spectroscopy, Atmos. Meas. Tech., 9, 2827-2844,
- 875 <u>https://doi.org/10.5194/amt-9-2827-2016, 2016.</u>
- 876 Taketani, F., Kanaya, Y., and Akimoto, H.: Kinetics of heterogeneous reactions of HO₂
- 877 radical at ambient concentration levels with (NH₄)₂SO₄ and NaCl aerosol particles., J. Phys.
- 878 Chem. A, 112, 2370-2377, https://doi.org/10.1021/jp0769936, 2008.
- Taketani, F., Kanaya, Y., Pocharnart, P., Liu, Y., Li, J., Okuzawa, K., Kawamura, K., Wang,
- 880 Z., and Akimoto, H.: Measurement of overall uptake coefficients for HO₂ radicals by aerosol
- particles sampled from ambient air at Mts. Tai and Mang (China). Atmos. Chem. Phys., 12,
- 882 11907-11916, https://doi.org/10.5194/acp-12-11907-2012, 2012.
- 883 Tan, Z., Hofzumahaus, A., Lu, K., Brown, S. S., Holland, F., Huey, L. G., Kiendler-Scharr,
- 884 A., Li, X., Liu, X., Ma, N., Min, K.-E., Rohrer, F., Shao, M., Wahner, A., Wang, Y.,
- 885 Wiedensohler, A., Wu, Y., Wu, Z., Zeng, L., Zhang, Y., and Fuchs, H.: No Evidence for a
- 886 Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North
- 887 China Plain in Summer 2014, Environ. Sci. Technol., 54, 5973-5979,
- 888 https://doi.org/10.1021/acs.est.0c00525, 2020.
- 889 Thornton, J. A. and Abbatt, J. P. D.: Measurements of HO₂ uptake of aqueous aerosol: Mass
- accommodation coefficients and net reactive loss., J. Geophys. Res., 110,
- 891 https://doi.org/10.1029/2004JD005402, 2005.
- 892 Thornton, J. A., Jaegle', L., and McNeill, V. F.: Assessing known pathways for HO₂ loss in
- 893 aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. , J.
- 894 Geophys. Res., 113, https://doi.org/10.1029/2007JD009236, 2008.
- 895 van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., Mao, H., and Theys,
- 896 N.: Cleaning up the air: effectiveness of air quality policy for SO_2 and NO_x emissions in
- 897 China, Atmos. Chem. Phys., 17, 1775-1789, https://doi.org/10.5194/acp-17-1775-2017, 2017.
- 898 Verstraeten, W. W., Neu, J. L., Williams, J. E., Bowman, K. W., Worden, J. R., and
- 899 Boersma, K. F.: Rapid increases in tropospheric ozone production and export from China,
- 900 Nat. Geosci, 8, 690-695, https://doi.org/10.1038/ngeo2493, 2015.
- 901 Wang, P.: China's air pollution policies: Progress and challenges, Current Opinion in
- 902 Environmental Science & Health, 19, 100227, https://doi.org/10.1016/j.coesh.2020.100227,
- 903 2021.
- Whalley, L. K., Blitz, M. A., Desservattez, M., Seakins, P. W., and Heard, D. E.: Reporting
- 905 the sensitivity of laser-induced fluorescence instruments used for HO₂ detection to an
- 906 interference from RO₂ radicals and introducing a novel approach that enables HO₂ and

- 907 certain RO₂ types to be selectively measured, Atmos. Meas. Tech., 6, 3425-3440,
- 908 https://doi.org/10.5194/amt-6-3425-2013, 2013.
- 909 Whalley, L. K., Stone, D., Bandy, B., Dunmore, R., Hamilton, J. F., Hopkins, J., Lee, J. D.,
- 910 Lewis, A. C., and Heard, D. E.: Atmospheric OH reactivity in central London: observations,
- 911 model predictions and estimates of in situ ozone production, Atmos. Chem. Phys., 16, 2109-
- 912 2122, https://doi.org/10.5194/acp-16-2109-2016, 2016.
- 913 Whalley, L. K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A.
- 914 C., Williams, P., Kleffmann, J., Laufs, S., Woodward-Massey, R., and Heard, D. E.:
- 915 Understanding in situ ozone production in the summertime through radical observations and
- 916 modelling studies during the Clean air for London project (ClearfLo), Atmos. Chem. Phys.,
- 917 18, 2547-2571, https://doi.org/10.5194/acp-18-2547-2018, 2018.
- 918 Whalley, L. K., Furneaux, K. L., Goddard, A., Lee, J. D., Mahajan, A., Oetjen, H., Read, K.
- 919 A., Kaaden, N., Carpenter, L. J., Lewis, A. C., Plane, J. M. C., Saltzman, E. S.,
- 920 Wiedensohler, A., and Heard, D. E.: The chemistry of OH and HO₂ radicals in the boundary
- layer over the tropical Atlantic Ocean, Atmos. Chem. Phys., 10, 1555-1576,
- 922 <u>https://doi.org/10.5194/acp-10-1555-2010</u>, 2010.
- 923 Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins,
- 924 J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, A., Worrall, S. D.,
- 925 Bacak, A., Bannan, T. J., Coe, H., Ouyang, B., Jones, R. L., Crilley, L. R., Kramer, L. J.,
- 926 Bloss, W. J., Vu, T., Kotthaus, S., Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Acton,
- 927 W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Evaluating the sensitivity of
- 928 radical chemistry and ozone formation to ambient VOCs and NOx in Beijing, Atmos. Chem.
- 929 Phys. Discuss., 21, 2125-2147, https://doi.org/10.5194/acp-2020-785, 2021.
- 930 Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner,
- 931 B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac,
- 932 H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P.,
- 933 Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F.,
- 934 Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G.,
- 935 O'Dowd, C. D., Marinoni, A., Horn, H. G., Keck, L., Jiang, J., Scheckman, J., McMurry, P.
- 936 H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and
- 937 Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and
- 938 data structure to facilitate high quality long-term observations of atmospheric particle number
- 939 size distributions, Atmos. Meas. Tech., 5, 657-685, https://doi.org/10.5194/amt-5-657-2012,
- 940 2012.

- Woodward-Massey, R., Slater, E. J., Alen, J., Ingham, T., Cryer, D. R., Stimpson, L. M., Ye,
- 942 C., Seakins, P. W., Whalley, L. K., and Heard, D. E.: Implementation of a chemical
- background method for atmospheric OH measurements by laser-induced fluorescence:
- 944 characterisation and observations from the UK and China, Atmos. Meas. Tech., 13, 3119-
- 945 3146, https://doi.org/10.5194/amt-13-3119-2020, 2020.
- Yue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders,
- 947 S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four
- 948 Chinese cities: precursors, regional transport and heterogeneous processes, Atmos. Chem.
- 949 Phys., 14, 13175-13188, https://doi.org/10.5194/acp-14-13175-2014, 2014.
- 950 Ye, C., Heard, D. E., and Whalley, L. K.: Evaluation of novel routes for NO_x formation in
- 951 remote regions., Environ. Sci. Technol., 51, 7442-7449, https://doi.org/acs.est.6b06441,
- 952 2017.
- 953 Zhou, J., Murano, K., Kohno, N., Sakamoto, Y., and Kajii, Y.: Real-time quantification of the
- 954 total HO₂ reactivity of ambient air and HO₂ uptake kinetics onto ambient aerosols in Kyoto
- 955 (Japan), Atmos. Environ., 223, 117189, https://doi.org/10.1016/j.atmosenv.2019.117189,
- 956 2020.
- 957 Zhou, J., Sato, K., Bai, Y., Fukusaki, Y., Kousa, Y., Ramasamy, S., Takami, A., Yoshino, A.,
- 958 Nakayama, T., Sadanaga, Y., Nakashima, Y., Li, J., Murano, K., Kohno, N., Sakamoto, Y.,
- 959 and Kajii, Y.: Kinetics and impacting factors of HO₂ uptake onto submicron atmospheric
- 960 aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan, Atmos. Chem.
- 961 Phys., 21, 12243-12260, https://doi.org/10.5194/acp-21-12243-2021, 2021.